Background: Shortcomings to tibial-side fixation have been reported as causes of failure after anterior cruciate ligament reconstruction. Adjustable-loop suspensory devices have become popular; however, no comparison with hybrid fixation (ie, interference screw and cortical button) exists to our knowledge. Purpose: The purpose of this study was to compare the biomechanical properties of adjustable loop devices (ALDs) in full-tunnel and closed-socket configurations in relation to hybrid fixation. We hypothesized that primary stability of fixation by a tibial ALD will not be inferior to hybrid fixation. Study Design: Controlled laboratory study. Methods: Tibial fixation of a quadrupled tendon graft was biomechanically investigated in a porcine tibia–bovine tendon model using 5 techniques (n = 6 specimens each). The tested constructs included hybrid fixation with a cortical fixation button and interference screw (group 1), single cortical fixation with the full-tunnel technique using an open-suture strand button (group 2) or an ALD (group 3), or closed-socket fixation using 2 different types of ALDs (groups 4 and 5). Each specimen was evaluated using a materials testing machine (1000 cycles from 50-250 N and pull to failure). Force at failure, cyclic displacement, stiffness, and ability to pretension the graft during insertion were compared among the groups. Results: No differences in ultimate load to failure were found between the ALD constructs (groups 3, 4, and 5) and hybrid fixation (group 1). Cyclic displacement was significantly higher in group 2 vs all other groups ( P < .001); however, no difference was observed in groups 3, 4, and 5 as compared with group 1. The remaining tension on the construct after fixation was significantly higher in groups 3 and 4 vs groups 1, 2, and 5 ( P < .02 for all comparisons), irrespective of whether a full-tunnel or closed-socket approach was used. Conclusion: Tibial anterior cruciate ligament graft fixation with knotless ALDs achieved comparable results with hybrid fixation in the full-tunnel and closed-socket techniques. The retention of graft tension appears to be biomechanically more relevant than tunnel type. Clinical Relevance: The study findings emphasize the importance of the tension at which fixation is performed.