Real world settings are seldomly just composed of level surfaces and stairs are frequently encountered in daily life. Unfortunately, ~ 90% of the elderly population use some sort of compensation pattern in order to negotiate stairs. Because the biomechanics required to successfully ascend stairs is significantly different from level walking, an independent training protocol is warranted. Here, we present as a preliminary investigation with 11 able-bodied subjects, prior to clinical trials, whether Myosuit could potentially serve as a stair ascent training robot. Myosuit is a soft wearable exosuit that was designed to assist the user via hip and knee extension during the early stance phase. We hypothesized that clinical studies could be carried out if the lower limb kinematics, sensory feedback via plantar force, and electromyography (EMG) patterns do not deviate from the user’s physiological stair ascent patterns while reducing hip and knee extensor demand. Our results suggest that Myosuit conserves the user’s physiological kinematic and plantar force patterns. Moreover, we observe approximately 20% and 30% decrease in gluteus maximus and vastus medialis EMG levels in the pull up phase, respectively. Collectively, Myosuit reduces the hip and knee extensor demand during stair ascent without any introduction of significant compensation patterns.