Berula erecta L. is traditionally used for the treatment of various human ailments. The present project was arranged to study the antioxidant and anti-Parkinson efficacy of B. erecta extracts against rotenone-induced Parkinson diseases in rats. Fine powder of the plant was extracted with methanol and then fractionated through various solvents with increasing order of polarity. Phytochemical screenings were done using standard protocols and High-performance liquid chromatography (HPLC) while in-vitro antioxidant activities of plant fractions were evaluated using different free radicals. In-vivo anti-Parkinson and oxidative dysfunction experiments were conducted in rats. Results revealed that various fractions possessed flavonoids, alkaloids, terpenoids saponins, tannin, anthraquinon, and phlobatanine, while terpeniods and alkaloids were absent in aqueous fraction. Chromatographic analysis of methanol fraction showed the presence of various bioactive compounds viz., vitexin, orientin, rutin, catechin and myricetin. In-vitro antioxidant activities of various fractions of Berula erecta (B.erecta) showed that methanol fraction has remarkable scavenging efficacy of 2,2-Diphenyl-1-picrylhydrazyl (DPPH), beta carotene, and superoxide free radicals followed by chloroform fraction. Free radicals produced by 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Hydrogen peroxide (H2O2), and hydroxyl free radicals were considerably scavenged by methanol fraction followed by ethyl acetate fractions. In-vivo study of animal model showed that methanol fraction has significant recovery effects at behavioural, physiological and biochemical level against rotenone induced Parkinson disease. B.erecta has significantly improved rotenone-induced motor and nonmotor deficits (depression and cognitive impairments), increased antioxidant enzyme activity, and reduced neurotransmitter changes. It has been concluded from the present data that B.erecta enhances neurotransmitter levels by alleviating oxidative stress and antioxidant enzyme activity, hence improving motor activity, cognitive functioning, and decreasing depressed behavior. These data suggest that B. erecta may be a promising medicinal agent for reducing the risk and progression of Parkinson’s disease.