Mineralization of collagen fibrils using solution-based systems containing biomimetic analogs of matrix proteins to stabilize supersaturated calcium phosphate solutions have been predictably achieved in-vitro. Solution-based systems have limitations when used for in-situ remineralization of human hypomineralized tissues because periodic replenishment of the mineralizing solution is infeasible. A carrier-based platform designed for delivering mineral precursors would be highly desirable. In the present work, mesoporous silica nanoparticles with expanded pores (eMSN; 14.8 nm) were synthesized. Polyacrylic acid-stabilized amorphous calcium phosphate (PA-ACP) was generated from a supersaturated calcium and phosphate ion-containing solution, and chosen as the model mineralizing phase. After amine functionalization (AF) of the eMSN through a post-grafting method, the positively-charged AF-eMSN enabled loading of PA-ACP by electrostatic interaction. In-vitro cytotoxicity testing indicated that PA-ACP@AF-eMSN was highly biocompatible. The release kinetics of mineralization precursors from PA-ACP@AF-eMSN was characterized by an initial period of rapid calcium and phosphate release that reached a plateau after 120 hr. Intrafibrillar mineralization was examined using a 2-D fibrillar collagen model; successful mineralization was confirmed using transmission electron microscopy. To date, this is the first endeavor that employs expanded-pore mesoporous silica to deliver polymer-stabilized intermediate precursors of calcium phosphate for intrafibrillar mineralization of collagen. The carrier-based delivery system bridges the gap between contemporary solution-based biomineralization concepts and clinical practice, and is useful for in-situ remineralization of bone and teeth.