IntroductionBiomaterials research aims to recapitulate different extracellular environments that dictate cell fates, for understanding the underlying cell biology and the development of smart materials In recent years, many mechanical, physical, chemical, and biochemical features of biomatrices have emerged as important properties to dictate the fates of cells. To construct chemically defined biomaterials to recapitulate various biological niches for both cell biology research and therapeutic utilities, it has become increasingly clear that a simple hydrated polymer network would not be able to provide the complex cues and signaling required for many types of cells. The researchers are facing a growing list of mechanophysical and biochemical properties, while each of them could be an important cellular trigger. To include all these design parameters in screening and synthesis is practically difficult, if not impossible. Developing novel high throughput screening technology by combining assay miniaturization, computer simulations, and modeling can help researchers to tackle the challenge to identify the most relevant parameters to tailor materials for specific applications.
BiomaterialsThe ORCID identification number(s) for the author(s) of this article can be found under https://doi.