Developing a fluorine-free, durable, high-performance waterproof breathable film for fabrics remains a formidable challenge. In this paper, a strategy for the preparation of fluorine-free, durable, and high-efficiency fabric waterproof and breathable membranes using glyceryl monostearate (GMS)/double-ended hydroxy silicone oil (HTSF)-modified waterborne polyurethane was proposed. The orderly orientation of GMS and HTSF gives the fabric excellent water-repellent properties, and the polyurethane macromolecular chain ensures strong adhesion of long-chain alkanes and silicones to the fabric surface. In this paper, the effects of different GMS contents on the stability, chemical structure, particle size, viscosity, water absorption performance, surface morphology, and XPS of a waterborne polyurethane fluorine-free waterproof and breathable membrane (GHWPU) were studied. At the same time, the application properties of GHWPU-treated fabrics, such as waterproof performance, antifouling performance, surface energy, morphology, and air permeability, were discussed. Through the analysis of SEM and XPS, it was found that the folds on the surface of the film were more and more orderly with the increasing content of GMS, and this orderly distribution of water-repellent groups endowed the film with excellent water-repellent ability. When the GMS content was 28 wt %, the finished fabrics had excellent comprehensive properties such as static contact angle of 141.6°, hydrostatic pressure of 96.7 KPa, resistance to more than 30 washes, and air permeability of 119.3 mm/s.