In high throughput microscopy, it is often assumed that the objects under investigation are fixed spatially. In addition, it is also presumed that the objects are sufficiently populated, otherwise there will be need to search through vast tracks of field of views before any recording can be done. The ability to collect objects at one location in the hydrated state is thus desirable and this is a challenge when the density of target objects in a sample is very low. In this work, we report that the generation of a squeezing flow from a circular coverslip compressing on suspensions is able to collect particulate (microbeads, fluorescent nanobeads and live algal cells) and non-particulate (EGFP) objects at the rim region of the coverslip. With a coverslip of 13 mm diameter, volumes between 2 µL and 4 µL were found to completely fill the coverslip without breaching the rims. Sample compression speeds between 100 µm/s and 1000 µm/s did not have any effect on object collection outcomes. In effect, the simple placement of coverslips on top the drop of sample by hand without a motorized translator was found to produce similar collection outcomes. Quantitative measurements confirmed that all the objects investigated were displaced and relocated at the rim regions to a very high degree.