It is the intention
of this study to elucidate the nested formation
of calcium carbonate polymorphs or polyamorphs in the different nanosized
compartments. With these observations, it can be concluded how the
bacteria can survive in a harsh environment with high calcium carbonate
supersaturation. The mechanisms of calcium carbonate precipitation
at the surface membrane and at the underlying cell wall membrane of
the thermophilic soil bacterium
Geobacillus stearothermophilus
DSM 13240 have been revealed by high-resolution transmission electron
microscopy and atomic force microscopy. In this Gram-positive bacterium,
nanopores in the surface layer (S-layer) and in the supporting cell
wall polymers are nucleation sites for metastable calcium carbonate
polymorphs and polyamorphs. In order to observe the different metastable
forms, various reaction times and a low reaction temperature (4 °C)
have been chosen. Calcium carbonate polymorphs nucleate in the confinement
of nanosized pores (⌀ 3–5 nm) of the S-layer. The hydrous
crystalline calcium carbonate (ikaite) is formed initially with [110]
as the favored growth direction. It transforms into the anhydrous
metastable vaterite by a solid-state transition. In a following reaction
step, calcite is precipitated, caused by dissolution of vaterite in
the aqueous solution. In the larger pores of the cell wall (⌀
20–50 nm), hydrated amorphous calcium carbonate is grown, which
transforms into metastable monohydrocalcite, aragonite, or calcite.
Due to the sequence of reaction steps via various metastable phases,
the bacteria gain time for chipping the partially mineralized S-layer,
and forming a fresh S-layer (characteristic growth time about 20 min).
Thus, the bacteria can survive in solutions with high calcium carbonate
supersaturation under the conditions of forced biomineralization.