The ultimate goal of any surgical procedure is to improve perioperative form and function and to minimize operative and postoperative morbidity. In recent years, many exciting and novel technological advances have been introduced in the field of oral and maxillofacial surgery. One example of such technology that is continuing to increase in prevalence is the use of 3-dimensional (3-D) printing techniques with special properties, which seems hopeful for practitioners in the field of regenerative medicine. Tissue engineering is a critical and important area in biomedical engineering for creating biological alternatives for grafts, implants, and prostheses. One of the main triad bases for tissue engineering is scaffolds, which play a great role for determining growth directions of stem cells in a 3-dimensional aspect. Mechanical strength of these scaffolds is critical as well as interconnected channels and controlled porosity or pores distribution. However, existing 3-D scaffolds proved less than ideal for actual clinical applications. In this chapter, we review the application and advancement of rapid prototyping (RP) techniques in the design and creation of synthetic scaffolds for use in tissue engineering. Also, we survey through new and novel merging era of "bioprinting."