Background
Agro-industrial wastewaters in Ethiopia cause severe environmental pollution problems. Research evidence showed that anaerobic reactors are good options for the treatment of these wastewaters. But, their final effluent does not meet the discharge standards. Conversely, a series stage horizontal subsurface flow constructed wetland (HSSFCW) system is encouraging for the polishing of anaerobic reactor effluents. However, its treatment efficiency is dependent on hydraulic residence time (HRT). Cyperus alternifolius and Typha latifolia-based wastewater treatment showed good removal efficiencies individually. However, data on their combined treatment effectiveness is negligible. Therefore, this study assesses HRT influences on the treatment effectiveness of a two-stage HSSFCW system planted with these two macrophytes for the polishing of anaerobic reactor brewery effluent. A series connected two-stage HSSFCW unit planted with Cyperus alternifolius and Typha latifolia was built to treat Kombolcha brewery anaerobic reactor effluent. Then, the macrophytes were endorsed to grow with continuous application of diluted brewery effluent from a reservoir tank using gravity force. After dense stand formation, the experiment was initiated to determine the influence of HRTs on the removal efficiency of a complete wetland system. The system was operated sequentially by supplying fixed influent inflow rates of 2791, 1395, 930, 698, and 558 L day−1, respectively, for 1, 2, 3, 4, and 5 days HRT. Both the influent and effluent of the two-stage HSSFCW system were analyzed following common procedures for main brewery pollutants.
Result
Results showed that as HRT increased from 1 to 5 days, the effluent pH and temperature were decreased along with enhanced pollutant removals ranging from 47.8–87.2%, 29.2–90.1%, 32.9–77.7%, 16.8–75.4%, and 18.4–76.8% with decreased influent mass loading rates ranging from 26.4–2.1, 64.5–7.3, 11.5–0.8, 5–0.6, and 3.8–0.4 gm−2 day−1, respectively, for total suspended solids, chemical oxygen demand, total nitrogen, total phosphorous and orthophosphate. However, better and steadier pollutant removals were achieved at higher HRTs.
Conclusion
For better nutrient removals, the 4 and 5 days HRT can serve as a good benchmark.