2022
DOI: 10.1016/j.cmpb.2022.106999
|View full text |Cite
|
Sign up to set email alerts
|

Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2025
2025

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(4 citation statements)
references
References 25 publications
0
3
0
1
Order By: Relevance
“…Xie et al [16] developed an advanced neural network model, Bi-ConvGRU, to recognize hand gestures from EMG signals, allowing detailed measurement of muscle activity. This model was evaluated by considering 18 hand gestures from the Ninapro dataset performed by both amputee and non-amputee individuals.…”
Section: Related Workmentioning
confidence: 99%
“…Xie et al [16] developed an advanced neural network model, Bi-ConvGRU, to recognize hand gestures from EMG signals, allowing detailed measurement of muscle activity. This model was evaluated by considering 18 hand gestures from the Ninapro dataset performed by both amputee and non-amputee individuals.…”
Section: Related Workmentioning
confidence: 99%
“…Following some surgeries and diseases, physical rehabilitation therapy is frequently required, and using multimodal measurement systems makes it possible to track the development more precisely [196]. J. Monge et al [197] presented an intelligent physical rehabilitation system that used augmented reality, EMG, ECG, and IMU sensors, remote health status monitoring, and supported rehabilitation to engage patients.…”
Section: E Rehabilitation and Prosthesis Controlmentioning
confidence: 99%
“…Кроме того, распознавание жестов находит применение при осуществлении человекомашинного взаимодействия [8][9][10][11][12], а также в биомедицине, например, для управления протезами конечностей на основе нервных импульсов предплечья [13]. Дополнительно, для повышения точности работы алгоритмов распознавания жестов применяют специализированное оборудование, такое как перчатки для распознавания жестов [14], другие носимые на руках датчики (например, акселерометр, гироскоп и магнитометр [15] или приборы, регистрирующие биосигналы тела человека.…”
Section: анализ существующих технологийunclassified