Contamination or pollution of our environment has become a real global concern, especially in parallel with the increasing evolution of urbanization and industrialization, which in turn have released a plethora of different pollutants that end up being deposited in soils. It is crucial to investigate solutions that can minimize the extent of damage, and that are cost-effective, feasible and environmentally friendly, to treat a wide variety of contaminants in soils, as well as to detoxify various compounds. Bioremediation is a safe technique that has demonstrated satisfactory results and is easy to apply and maintain. This technique explores the degradation pathways of various biological agents (microorganisms, plants, algae, etc.) to neutralize contaminants. It is based on biodegradation through a complete mineralization of organic pollutants into inorganic innocuous compounds, such as carbon dioxide and water. This review aims to determine the feasibility of bioremediation as a cleanup technology for soils contaminated with pesticides, agrochemicals, chlorinated compounds, heavy metals, organic halogens, greenhouse gases, petroleum hydrocarbons, and many others, either in situ or ex situ. Different bioremediation approaches are described and compared, showing their advantages and drawbacks from a critical point of view. Moreover, both the economic and technical barriers of bioremediation are addressed, along with the outlook for the role of microorganisms in the process, the aim to identify future directions, and the application feasibility of this process.