Adult mammalian retinas contain unusually high amounts of GD3, a ganglioside of the lactosylceramide series. In this respect, they differ from adult avian retina and other regions of the adult avian and mammalian brain, where GD3 is a minor ganglioside and gangliosides of the gangliotetraosylceramide series (GM1, GD1a, GD1b, GT1b) are the predominant ones. We compare here the ganglioside patterns of rat, human, horse, and guinea pig retinas, which are known to differ in the degree of vascularization and astrocytic cell content. All these retinas showed a prevalence of pathway "b" gangliosides over pathway "a" gangliosides but showed no correlation between GD3 content and the degree of vascularization and astrocytic cell content. Immunostaining of rat retina sections showed the presence of GD3 in the inner and outer plexiform layers and also in the ganglion cell and inner nuclear layers. About 60% of the cells dissociated from rat retina showed immuno-colocalization of GD3 and the neuronal marker class III beta tubulin isotype or cholera toxin binding. All morphologically identifiable glial Muller cells coexpress GD3 and gangliotetraosylgangliosides. GD3 was a minor ganglioside among these axonally transported by ganglion cells in rats and guinea pigs, suggesting that it is either not synthesized by ganglion cells or, if so, it is restricted to the cell soma and/or dendritic tree. Our results demonstrate that, unlike neurons from avian retina and other regions of avian and mammalian brain, neurons from mammalian retina not only contain gangliosides of the gangliotetraosylceramide series but also keep a prevalence of gangliosides of the lactosylceramide series (GD3) when they are fully differentiated.