The extension of (13)C-nuclear magnetic resonance (NMR) techniques to study cellular metabolism over recent years has provided valuable data supporting the occurrence, diversity and extent of carbon cycling in the carbohydrate metabolism of micro-organisms. The occurrence of such cycles, resulting from the simultaneous operation of different and sometimes opposite individual steps, is inherently related to the network organisation of cellular metabolism. These cycles are tentatively classified here as 'reversibility', 'metabolic' and 'substrate' cycles on the basis of their balance in carbon and cofactors. Current hypotheses concerning the physiological relevance of carbohydrate cycles are discussed in light of the (13)C-NMR data. They most likely represent system-level mechanisms for coherent and timely partitioning of carbon resources to fit with the various biosynthetic, energetic or redox needs of cells and/or additional strategies in the adaptive capacity of micro-organisms to face variation in environmental conditions.