Guinea pig liver microsomal and mitochondrial membranes were degraded with phospholipase C and D followed by partial biosynthetic reconstitution. Activities of phosphatidylinositol synthetase in microsomal membranes and NADPH-cytochrome c reductase were almost completely lost after phospholipase C and D treatment; almost complete restoration of the original activity was achieved after biosynthesis of phosphatidylcholine in degraded microsomes, but was not reparable after biosynthesis of cytidinediphosphodiglycerides (CDP-diglycerides). The mitochondrial biosynthesis of polyglycerophosphatides was completely retained after degradation of these membranes with phospholipase C, but after similar treatment with phospholipase D, only about one-quarter of the original activity remained, the relative composition of polyglycerophosphatides being significantly different. The activity of NADPH-cytochrome c reductase of microsomes represented about 76% of the original activity after phospholipase C treatment, but only approximately 1% after treatment with phospholipase D. Although this activity could not be restored with CDP-diglyceride synthesis, it was restored to about 75% of the original activity after the biosynthesis of phosphatidylcholine in these fragments. These and additional experimental findings are discussed in terms of the relation between structural organization of lipids and proteins and enzymatic activities of membrane-bound phospholipid-synthesizing enzymes in microsomal and mitochondrial membranes isolated from guinea pig liver.