Diatoms are ubiquitous organisms in aquatic environments and are estimated to be responsible for 20-25 % of the total global primary production. A unique feature of diatoms is the silica wall, called the frustule. The frustule is characterized by species-specific intricate nanopatterning in the same size range as wavelengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms' photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well as area of potential application, is UV protection. In this review, we explore the possible adaptive value of the silica frustule with focus on research on the effect of UV radiation on diatoms. We also explore the possible effect of the frustules on UV radiation, from a theoretical, biological, and applied perspective, including recent experimental data on UV transmission of diatom frustules.