It is known that the suspended liquid
droplets in clouds can generate
electrostatic charges, which finally results in the lightning. However,
the detailed mechanism related to the contact-electrification process
on the liquid-gas (L-G) interfaces is still poorly understood. Here,
by introducing an acoustic levitation method for levitating a liquid
droplet, we have studied the electrification mechanism at the L-G
interface. The tribo-motion between water droplets and air induced
by the ultrasound wave leads to the generation of positive charges
on the surface of the droplets, and the charge amount of water droplets
(20 μL) gradually reaches saturation within 30 s. The mixed
solid particles in droplets can increase the amount of transferred
charge, whereas the increase of ion concentration in the droplet can
suppress the charge generation. This charge transfer phenomenon at
L-G interfaces and the related analysis can be a guidance for the
study in many fields, including anti-static, harvesting rainy energy,
micro/nano fluidics, triboelectric power generator, surface engineering,
and so on. Moreover, the surface charge generation due to L-G electrification
is an inevitable effect during ultrasonic levitation, and thus, this
study can also work for the applications of the ultrasonic technique.