Caffeine has been shown to reverse some of the performance-impairing effects of ethanol. However, it is not known whether this antagonistic effect of caffeine is mediated by a reduction in sleepiness. The present study assessed physiological alertness/sleepiness, memory, and psychomotor performance following the administration of placebo, ethanol, and caffeine+ethanol combinations. A total of 13 healthy individuals (21-35 years old) underwent four conditions presented in a Latin Square Design: placebo-placebo, ethanol (0.5 g/kg)-placebo, ethanol (0.5 g/kg)-caffeine 150 mg, and ethanol (0.5 g/kg)-caffeine 300-mg. The Multiple Sleep Latency Test (MSLT), psychomotor performance battery, memory test, and mood/sleepiness questionnaires were administered following each condition. The peak breadth ethanol concentration (BrEC) was 0.043+/-0.0197% and did not differ among the three caffeine treatments. As expected, ethanol reduced mean latency on the MSLT. The lowest caffeine dose reversed this effect and the highest dose increased mean latency (greater alertness) significantly beyond placebo levels. Ethanol also impaired psychomotor performance and memory. The 300-mg caffeine dose restored performance and memory measures to placebo levels. Although visual analog ratings of dizziness were increased by ethanol, they were not diminished by either caffeine dose. In conclusion, Low-dose caffeine prevented the sleepiness and performance impairment associated with a moderate dose of ethanol. Thus, caffeine, similar to other stimulants, can reverse the physiologically sedating effects of ethanol, although other negative effects remain.