Bird voice classification is a crucial issue in wild bird protection work. However, the existing strategies of static classification are always unable to achieve the desired outcomes in a dynamic data stream context, as the standard machine learning approaches mainly focus on static learning, which is not suitable for mining dynamic data and has the disadvantages of high computational overhead and hardware requirements. Therefore, these shortcomings greatly limit the application of standard machine learning approaches. This study aims to quickly and accurately distinguish bird species by their sounds in bird conservation work. For this reason, a novel concept-cognitive computing system (C3S) framework, namely, PyC3S, is proposed for bird sound classification in this paper. The proposed system uses feature fusion and concept-cognitive computing technology to construct a Python version of a dynamic bird song classification and recognition model on a dataset containing 50 species of birds. The experimental results show that the model achieves 92.77% accuracy, 92.26% precision, 92.25% recall, and a 92.41% F1-Score on the given 50 bird datasets, validating the effectiveness of our PyC3S compared to the state-of-the-art stream learning algorithms.