Purpose
Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs against such loads is based on the full-scale testing of the fuselage barrel, which, however, is highly demanding from a time and cost viewpoint. This paper aims to assist in scaling-down the experimentation to the stiffened panel level which presents the opportunity to validate state-of-the-art designs at higher rates than previously attainable.
Design/methodology/approach
Development of a methodology to successfully design tests at the stiffened panel level and realize them using advanced, complex and adaptable test-rigs that are capable of introducing independently a set of distinct load types (e.g. internal overpressure, tension, shear) while applying appropriate boundary conditions at the edges of the stiffened panel.
Findings
A baseline test-rig configuration was developed after extensive parametric modelling studies at the stiffened panel level. The realization of the loading and boundary conditions on the test-rig was facilitated through innovative supporting and loading system set-ups.
Originality/value
The proposed test bench is novel and compared to the conventional counterparts more viable from an economic and manufacturing point of view. It leads to panel responses, which are as close as possible to those of the fuselage barrel in-flight and can be used for the execution of static or fatigue tests on metallic and thermoplastic curved integrally stiffened full-scale panels, representative of a business jet fuselage.