For the most precise incorporation of single impurities in silicon, which is utilized to create quantum devices, a monolayer of adatoms on the Si(100) surface and a dopant-containing molecule are used. Here, we studied the interaction of phosphorus tribromide with a chlorine monolayer with mono- and bivacancies using a scanning tunneling microscope (STM) at 77 K. The combination of different halogens in the molecule and the adsorbate layer enabled unambiguous identification of the structures after PBr3 dissociation on Si(100)-Cl. A Cl monolayer was exposed to PBr3 in the STM chamber, which allows us to compare the same surface areas before and after PBr3 adsorption. As a result of this comparison, we detected small changes in the chlorine layer and unraveled the molecular fragments filling mono- and bivacancies. Using density functional theory, we found that the phosphorus atom occupies a bridge position after dissociation of the PBr3 molecule, which primarily bonds with silicon in Cl bivacancies. These findings provide insight into the interaction of a dopant-containing molecule with an adsorbate monolayer on Si(100) and can be applied to improve the process of single impurity incorporation into silicon.