The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596′s favorable binding profile, we designed a series of bispecific antibodies (bsAbs) termed CoV2-biRNs, that featured both NTD and RBD specificities. Notably, two of the C1596-inclusive bsAbs, CoV2 biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, EG.5.1, and BA.2.86, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 significantly reduced the viral load within the lungs of K18-hACE2 mice following challenge with SARS-CoV-2 XBB.1.5. In conclusion, our NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.