BackgroundBispectral index (BIS), an index used to monitor the depth of anesthesia, can be interfered with by the electromyogram (EMG) signal. The 95% spectral edge frequency (SEF95) also can reflect the sedation depth. Remimazolam in monitored anesthesia care results in higher BIS values than propofol, though in the same sedation level assessed by Modified Observers Assessment of Alertness and Sedation (MOAA/S). Our study aims to illustrate whether EMG is involved in remimazolam causing higher BIS value than propofol preliminarily and to explore the correlations among BIS, EMG, and SEF95 under propofol and remimazolam anesthesia.Patients and methodsTwenty-eight patients were randomly divided into propofol (P) and remimazolam (RM) groups. Patients in the two groups received alfentanil 10 μg/kg, followed by propofol 2 mg/kg and remimazolam 0.15 mg/kg. Blood pressure (BP), heart rate (HR), and oxygen saturation (SpO2) were routinely monitored. The BIS, EMG, and SEF95 were obtained through BIS VISTATM. The primary outcomes were BIS, EMG, and the correlation between BIS and EMG in both groups. Other outcomes were SEF95, the correlation between BIS and SEF95, and the correlation between EMG and SEF95. And all the statistical and comparative analysis between these signals was conducted with SPSS 26.0 and GraphPad Prism 8.ResultsBIS values, EMG, and SEF95 were significantly higher in the RM group than in the P group (all p < 0.001). There was a strong positive correlation between BIS and EMG in the RM group (r = 0.416). Nevertheless, the BIS in the P group showed a weak negative correlation with EMG (r = −0.219). Both P (r = 0.787) and RM group (r = 0.559) had a reasonably significant correlation coefficient between BIS and SEF95. SEF95 almost did not correlate with EMG in the RM group (r = 0.101).ConclusionBispectral index can be interfered with high EMG intensity under remimazolam anesthesia. However, EMG can hardly affect the accuracy of BIS under propofol anesthesia due to low EMG intensity and a weak negative correlation between EMG and BIS. Moreover, SEF95 may have a great application prospect in predicting the sedation condition of remimazolam.