Introduction
Individual agents used to treat human osteoporosis reduce fracture risk by ~50-60%. Since agents that act with complementary mechanisms are available, sequential therapies that mix anti-resorptive and anabolic agents could improve fracture risk reduction, when compared to monotherapies.
Methods
We evaluated bone mass, bone microarchitecture, and bone strength in adult ovariectomized (OVX), osteopenic rats, during different sequences of vehicle (Veh), parathyroid hormone (PTH), alendronate (Aln), or raloxifene (Ral) in three 90 day treatment periods, over nine months. Differences among groups were evaluated. The interrelationships of bone mass and microarchitecture endpoints, and their relationship to bone strength were studied.
Results
Estrogen deficiency caused bone loss. OVX rats treated with Aln monotherapy had significantly better bone mass, microarchitecture, and bone strength than untreated OVX rats. Rats treated with an Aln drug holiday had bone mass and microarchitecture similar to the Aln monotherapy group, but with significantly lower bone strength. PTH-treated rats had markedly higher bone endpoints, but all were lost after PTH withdrawal without follow-up treatment. Rats treated with PTH followed by Aln had better bone endpoints than those treated with Aln monotherapy, PTH monotherapy, or an Aln holiday. Rats treated initially with Aln or Ral, then switched to PTH, also had better bone endpoints, than monotherapy treatment. Rats treated with Aln, then PTH, and returned to Aln had the highest values for all endpoints.
Conclusion
Our data indicate that anti-resorptive therapy can be coupled with an anabolic agent, to produce and maintain better bone mass, microarchitecture, and strength than can be achieved with any monotherapy.