An aberrant growth of plasma cells in the bone marrow characterizes the hematological neoplasm known as multiple myeloma, which is typically accompanied by increased bone pain and skeletal-related events such as pathological fractures and/or spinal cord compression. Changes in the bone marrow microenvironment brought on by increased osteoclastic activity and/or decreased osteoblastic activity as a result of myeloma bone disease have a detrimental effect on quality of life. Bone-modifying medications such as bisphosphonates or denosumab are used to treat myeloma bone disease. These substances can lessen bone pain and the chance of pathological fracture, but they do not stimulate the growth of new bone or heal already damaged bone. In order to conduct this study, we searched the PubMed, Google Scholar, and Cochrane databases for complete free papers published in English and studied people over the previous five years, starting in 2018. The search covered randomized clinical trials (RCT), observational studies, meta-analyses, systemic reviews, and conventional reviews. Twenty-five publications are picked after using quality evaluation techniques to determine the type of study. These papers' full-text articles are investigated, examined, and tallied. We spoke about the various treatments for bone damage in multiple myeloma. It was discovered that bisphosphonates lessen the frequency and severity of bone problems. However, we are unsure of their contribution to survival.
Although these medicines enhance life quality, it is unknown if they also increase overall survival. The focus of this study is on several kinds of bone-modifying drugs, their processes of action, the point at which therapy is started, how long it lasts, and any possible mortality advantages.