We demonstrate multiphoton blockades (PB) in the pulsed regime by using Kerr nonlinear dissipative resonator driven by a sequence of Gaussian pulses. It is shown that the results obtained for single-photon, two-photon and three-photon blockades in the pulsed excitation regime differ considerably from analogous results obtained for the case of continuous-wave (cw) driving. We strongly demonstrate that for the case of cw pumping of the Kerr-nonlinear resonator there are fundamental limits on populations of lower photonic number-states (with n = 0, 1, 2, 3). Thus, such detailed comparison demonstrates that PB due to excitation with a suitable photon pulses is realized beyond the fundamental limits established for cw excitations. We analyze photon-number effects and investigate phase-space properties of PB on the base of photon number populations, the second-order correlation functions and the Wigner functions in phase space. Generation of Fock states due to PB in the pulsed regime is analysed in details.