“…Three main approaches have been proven to be effective for the control of different processes (such as gene expression and cell proliferation), namely: i) open-or closed-loop controllers embedded into cells by means of synthetic gene networks (Bloom et al, 2015;Hsiao et al, 2015;Briat et al, 2016;Ciar et al, 2018;Aoki et al, 2019;Pedone et al, 2019;Ye et al, 2016;Andrews et al, 2018;Gao et al, 2018;Siu et al, 2018;Bashor et al, 2019;Cuba Samaniego and Franco, 2021;Shakiba et al, 2021); ii) external controllers, where the controlled processes are within cells, while the controller (either at single cell or cellpopulation level) and the actuation functions are implemented externally via microfluidics-optogenetics/microscopy-flow cytometry platforms and adequate algorithms for online cell output quantification and control (Milias-Argeitis et al, 2011;Toettcher et al, 2011;Uhlendorf et al, 2012;Menolascina et al, 2014;Lugagne et al, 2017;Postiglione et al, 2018;Khazim et al, 2019;Shannon et al, 2020;de Cesare et al, 2021;Khazim et al, 2021;Pedone et al, 2021;de Cesare et al, 2022); iii) multicellular strategies, where both the control and actuation functions are embedded into cellular consortia (Matyjaszkiewicz et al, 2017;Fiore et al, 2016;Fiore et al, 2017;Kylilis et al, 2018;Postiglione et al, 2019;Ren et al, 2021). Plenty of examples of embedded controllers have been engineered across different cellular chassis; instead, applications of external and multicellular controllers in mammalian cells are scarce and either just theoretical or limited to proofs of concept.…”