Cultivated land plays a fundamental role in the sustainable development of the world. Monitoring the non-agricultural changes is important for the development of land-use policies. A bitemporal image transformer (BIT) can achieve high accuracy for change detection (CD) tasks and also become a key scientific tool to support decision-making. Because of the diversity of high-resolution RSIs in series, the complexity of agricultural types, and the irregularity of hierarchical semantics in different types of changes, the accuracy of non-agricultural CD is far below the need for the management of the land and for resource planning. In this paper, we proposed a novel non-agricultural CD method to improve the accuracy of machine processing. First, multi-resource surveying data are collected to produce a well-tagged dataset with cultivated land and non-agricultural changes. Secondly, a hierarchical semantic aggregation mechanism and attention module (HSAA) bitemporal image transformer method named HSAA-CD is performed for non-agricultural CD in cultivated land. The proposed HSAA-CD added a hierarchical semantic aggregation mechanism for clustering the input data for U-Net as the backbone network and an attention module to improve the feature edge. Experiments were performed on the open-source LEVIR-CD and WHU Building-CD datasets as well as on the self-built RSI dataset. The F1-score, intersection over union (IoU), and overall accuracy (OA) of these three datasets were 88.56%, 84.29%, and 68.50%; 79.84%, 73.41%, and 59.29%; and 98.83%, 98.39%, and 93.56%, respectively. The results indicated that the proposed HSAA-CD method outperformed the BIT and some other state-of-the-art methods and proved to be suitable accuracy for non-agricultural CD in cultivated land.