2019
DOI: 10.48550/arxiv.1908.10960
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bivariate poly-analytic Hermite polynomials

Abstract: A new class of bivariate poly-analytic Hermite polynomials is considered. We show that they are realizable as the Fourier-Wigner transform of the univariate complex Hermite functions and form a nontrivial orthogonal basis of the classical Hilbert space on the two-complex space with respect to the Gaussian measure. Their basic properties are discussed, such as their three term recurrence relations, operational realizations and differential equations (Bochner's property) they obey. Different generating functions… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?