Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we present some new static and spherically symmetric solutions of the Einstein equation in which the matter sector is accounted for by a free Dirac–Born–Infeld field. Our novel spacetimes can describe either a black hole, a wormhole, or a naked singularity depending on certain boundary conditions. By tracking the dynamical gravitational collapse, we enlighten the importance of the isotropy of the pressure for having an horizon as a result, as required by the Cosmic Censorship Conjecture. Our new spacetime solutions, the amount of exotic matter, its “complexity”, and the equation of state along the tangential direction are analytical and written in closed forms. We identify a taming of the breaking of the null energy condition, customary for wormhole spacetimes in General Relativity, along both the radial and tangential direction. We assess the astrophysical applicability and perform a comparative analysis between our solutions and other literature ones, by identifying an ISO-like density profile of the matter field, which provides a flattening of the rotation curves, by discussing the motion of test particles, and the shadow properties. In our model, those effects are interpreted as a manifestation of a topological defect, and since they can observationally mimic the signatures of other spacetimes, a study of the perturbations is performed within the quasi-normal modes formalism. Having identified the Reissner–Nordström-like quasi-resonance, our paper is intended also to provide some insights on which combinations of background and perturbation properties should be observed, for claiming the nature of astrophysical compact objects.
In this paper, we present some new static and spherically symmetric solutions of the Einstein equation in which the matter sector is accounted for by a free Dirac–Born–Infeld field. Our novel spacetimes can describe either a black hole, a wormhole, or a naked singularity depending on certain boundary conditions. By tracking the dynamical gravitational collapse, we enlighten the importance of the isotropy of the pressure for having an horizon as a result, as required by the Cosmic Censorship Conjecture. Our new spacetime solutions, the amount of exotic matter, its “complexity”, and the equation of state along the tangential direction are analytical and written in closed forms. We identify a taming of the breaking of the null energy condition, customary for wormhole spacetimes in General Relativity, along both the radial and tangential direction. We assess the astrophysical applicability and perform a comparative analysis between our solutions and other literature ones, by identifying an ISO-like density profile of the matter field, which provides a flattening of the rotation curves, by discussing the motion of test particles, and the shadow properties. In our model, those effects are interpreted as a manifestation of a topological defect, and since they can observationally mimic the signatures of other spacetimes, a study of the perturbations is performed within the quasi-normal modes formalism. Having identified the Reissner–Nordström-like quasi-resonance, our paper is intended also to provide some insights on which combinations of background and perturbation properties should be observed, for claiming the nature of astrophysical compact objects.
In this paper, we compare and contrast the classical versus quantum dynamics of a cosmological model based on the literature (Modified) Berthelot equation of state for the description of the dark sector of the universe. At the classical background level we identify a Minkowski-like and a de Sitter-like equilibrium epochs, with the latter occurring only beyond a certain threshold for a parameter in the equation of state; at the classical perturbed level we find that this same parameter realizes a duality in the adiabatic speed of sound between the two equilibrium epochs. The quantum evolution of this model is studied in the context of quantum geometrodynamics by solving analytically the Wheeler–DeWitt equation in the Born–Oppenheimer approximation for the scalar field potentials about the two equilibrium epochs. We identify the phenomenon of quantum decoherence to arise at the same threshold which constitutes the bifurcation between the two equilibrium epochs at the classical level. We comment on the quantum modified power spectrum focusing on some consequences dealing with the formation of astrophysical structures within the Press–Schechter framework. Our paper is intended to scrutinize which classical features of a certain cosmological model are preserved at its quantum level, and under which assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.