2000
DOI: 10.1103/physrevd.62.124006
|View full text |Cite
|
Sign up to set email alerts
|

Black hole formation from massive scalar field collapse in the Einstein–de Sitter universe

Abstract: We study the spherically symmetric collapse of a real, minimally coupled, massive scalar field in an asymptotically Einstein-de Sitter spacetime background. By means of an eikonal approximation for the field and metric functions, we obtain a simple analytical criterion-involving the physical size and mass scales ͑the field's inverse Compton wavelength and the spacetime gravitational mass͒ of the initial matter configurationfor generic ͑non-time-symmetric͒ initial data to collapse to a black hole. This analytic… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
23
0

Year Published

2004
2004
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(26 citation statements)
references
References 16 publications
3
23
0
Order By: Relevance
“…Inserting these expansions into the equations of motion leads, at leading order (namely order m 0 φ for the equations of motion), to the following expressions (restricting ourselves to a sum from j = 1 to j = 2 which, for the leading order, will be fully justified below): [31]. Notice that by time differentiating the last expression of m 0 , leading to zero since we have already shown thatṁ 0 = 0, one demonstrates that the expression obtained before, namely −R 0 3 (1 − k 0 )(2φ 0Ṙ0 + 2φ 0 R 0 + Φ 0 R 0Ṙ 0 /R 0 ) = 0, is identically satisfied and, therefore, does not lead to additional constraints.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Inserting these expansions into the equations of motion leads, at leading order (namely order m 0 φ for the equations of motion), to the following expressions (restricting ourselves to a sum from j = 1 to j = 2 which, for the leading order, will be fully justified below): [31]. Notice that by time differentiating the last expression of m 0 , leading to zero since we have already shown thatṁ 0 = 0, one demonstrates that the expression obtained before, namely −R 0 3 (1 − k 0 )(2φ 0Ṙ0 + 2φ 0 R 0 + Φ 0 R 0Ṙ 0 /R 0 ) = 0, is identically satisfied and, therefore, does not lead to additional constraints.…”
Section: Discussionmentioning
confidence: 99%
“…In Ref. [31], it is claimed that one can go to next-to-leading order (namely order m −1 φ for the equations of motion), the solution at this order being given by the following…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…As a consequence, an over-density δ R over the length scale R eventually collapses into a PBH, and in Ref. [22] (see also appendices A and B of Ref. [1]), it is shown that this occurs after a time…”
Section: Metric Preheatingmentioning
confidence: 96%
“…The EdeS model recently became a focus of interest for an increasing number of authors. (See, e.g., [2], [11], [12], [13], [14], [15], [22], [23], [29] and references therein.) We believe that the initial value problem and the explicit representation formulas obtained in the present paper fill the gap in the existing literature on the wave equation in the EdeS spacetime.…”
Section: Introductionmentioning
confidence: 99%