Thermo-vortices (bright spots, blobs, swirls) in cosmic fluids (planetary atmospheres, or even black hole accretion disks) are sometimes observed as clustered into quasi-symmetrical quasi-stationary groups but conceptualized in models as autonomous items. We demonstrate—using the (analytical) Sharp Boundaries Evolution Method and a generic model of a thermo-vorticial field in a rotating “thin” fluid layer in a spacetime that may be curved or flat—that these thermo-vortices may be not independent but represent interlinked parts of a single, coherent, multi-petal macro-structure. This alternative conceptualization may influence the designs of numerical models and image-reconstruction methods.