Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole.