We used a proteomic approach to gain insights into the mechanisms of protection at the protein level by a high n-3:n-6 ratio in the absence and presence of Tamoxifen. Four groups were treated with 1-methyl-1-nitrosourea (MNU) and fed the following diets with varied n-3:n-6 ratios; group 1 ÂŒ 1:1; groups 2 and 3 ÂŒ 10:1 and 25:1, respectively; group 4: (25:1) plus Tamoxifen (1 mg/kg diet). The plasma from six rats/group was pooled and analyzed with the isobaric tags for relative and absolute quantitation method; 148 proteins were identified with 95% confidence by ProteinPilot 4.0. In plasma of rats fed 10:1, 25:1 n-3:n-6, and 25:1 plus Tamoxifen, the number of proteins that met our criteria (P 0.05, error factor 2) were 10, 14, and 19 proteins, respectively. Selected proteins were further validated by Western blotting. Compared to 1:1, both 10:1 and 25:1 diets upregulated vitamin D binding protein, gelsolin, and 14-3-3 sigma, reported to have tumor suppressive effects, whereas alpha-1B-glycoprotein, which has been reported to be elevated in the serum of breast cancer patients was decreased. Compared to 25:1, the 25:1 plus Tamoxifen diet downregulated apolipoprotein E, haptoglobin, and inter-a-inhibitor H4 heavy chain. Ingenuity pathway analysis determined that the trends of specific proteins were related to lipid metabolism in the 25:1 n-3:n-6 group, whereas the 25:1 n-3:n-6 plus Tamoxifen group included proteins involved in cancer and inflammation. Our results show that several proteins were altered in a manner consistent with chemoprevention. Such proteins may serve as biomarkers to monitor efficacy of n-3 and Tamoxifen in future clinical chemoprevention trials. Cancer Prev Res; 6(9); 979-88. Ă2013 AACR.