Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider the relaxation of an initial non-equilibrium state in a one-dimensional fluid of hard rods. Since it is an interacting integrable system, we expect it to reach the Generalized Gibbs Ensemble (GGE) at long times for generic initial conditions. Here we show that there exist initial conditions for which the system does not reach GGE even at very long times and in the thermodynamic limit. In particular, we consider an initial condition of uniformly distributed hard-rods in a box with the left half having particles with a singular velocity distribution (all moving with unit velocity) and the right half particles in thermal equilibrium. We find that the density profile for the singular component does not spread to the full extent of the box and keeps moving with a fixed effective speed at long times. We show that such density profiles can be well described by the solution of the Euler equations almost everywhere except at the location of the shocks, where we observe slight discrepancies due to dissipation arising from the initial fluctuations of the thermal background. To demonstrate this effect of dissipation analytically, we consider a second initial condition with a single particle at the origin with unit velocity in a thermal background. We find that the probability distribution of the position of the unit velocity quasi-particle has diffusive spreading which can be understood from the solution of the Navier–Stokes (NS) equation of the hard rods. Finally, we consider an initial condition with a spread in velocity distribution for which we show convergence to GGE. Our conclusions are based on molecular dynamics simulations supported by analytical arguments.
We consider the relaxation of an initial non-equilibrium state in a one-dimensional fluid of hard rods. Since it is an interacting integrable system, we expect it to reach the Generalized Gibbs Ensemble (GGE) at long times for generic initial conditions. Here we show that there exist initial conditions for which the system does not reach GGE even at very long times and in the thermodynamic limit. In particular, we consider an initial condition of uniformly distributed hard-rods in a box with the left half having particles with a singular velocity distribution (all moving with unit velocity) and the right half particles in thermal equilibrium. We find that the density profile for the singular component does not spread to the full extent of the box and keeps moving with a fixed effective speed at long times. We show that such density profiles can be well described by the solution of the Euler equations almost everywhere except at the location of the shocks, where we observe slight discrepancies due to dissipation arising from the initial fluctuations of the thermal background. To demonstrate this effect of dissipation analytically, we consider a second initial condition with a single particle at the origin with unit velocity in a thermal background. We find that the probability distribution of the position of the unit velocity quasi-particle has diffusive spreading which can be understood from the solution of the Navier–Stokes (NS) equation of the hard rods. Finally, we consider an initial condition with a spread in velocity distribution for which we show convergence to GGE. Our conclusions are based on molecular dynamics simulations supported by analytical arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.