Featured Application: This algorithm embeds a binary image into an audio signal as a marker to prove the ownership of this audio signal. With large payload capacity and strong robustness against common signal processing attacks, it can be used for copyright protection, broadcast monitoring, fingerprinting, data authentication, and medical safety.Abstract: In order to improve the robustness and imperceptibility in practical application, a novel audio watermarking algorithm with strong robustness is proposed by exploring the multi-resolution characteristic of discrete wavelet transform (DWT) and the energy compaction capability of discrete cosine transform (DCT). The human auditory system is insensitive to the minor changes in the frequency components of the audio signal, so the watermarks can be embedded by slightly modifying the frequency components of the audio signal. The audio fragments segmented from the cover audio signal are decomposed by DWT to obtain several groups of wavelet coefficients with different frequency bands, and then the fourth level detail coefficient is selected to be divided into the former packet and the latter packet, which are executed for DCT to get two sets of transform domain coefficients (TDC) respectively. Finally, the average amplitudes of the two sets of TDC are modified to embed the binary image watermark according to the special embedding rule. The watermark extraction is blind without the carrier audio signal. Experimental results confirm that the proposed algorithm has good imperceptibility, large payload capacity and strong robustness when resisting against various attacks such as MP3 compression, low-pass filtering, re-sampling, re-quantization, amplitude scaling, echo addition and noise corruption.