2023
DOI: 10.3390/jimaging9100196
|View full text |Cite
|
Sign up to set email alerts
|

BlinkLinMulT: Transformer-Based Eye Blink Detection

Ádám Fodor,
Kristian Fenech,
András Lőrincz

Abstract: This work presents BlinkLinMulT, a transformer-based framework for eye blink detection. While most existing approaches rely on frame-wise eye state classification, recent advancements in transformer-based sequence models have not been explored in the blink detection literature. Our approach effectively combines low- and high-level feature sequences with linear complexity cross-modal attention mechanisms and addresses challenges such as lighting changes and a wide range of head poses. Our work is the first to l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 30 publications
0
0
0
Order By: Relevance