2010
DOI: 10.1016/j.jcp.2010.01.025
|View full text |Cite
|
Sign up to set email alerts
|

Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials

et al.
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
32
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 39 publications
(32 citation statements)
references
References 36 publications
0
32
0
Order By: Relevance
“…This goes back to the geophysical applications in [12,21]. Recent work in this direction includes [35,44,36,28,42,31,37].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…This goes back to the geophysical applications in [12,21]. Recent work in this direction includes [35,44,36,28,42,31,37].…”
Section: Introductionmentioning
confidence: 99%
“…In order to handle more general initial data in this paper, we (i) present the approximation solution through beam superpositions over Bloch bands and initial points from which beams are issued; and (ii) estimate the error between the exact wave field and the asymptotic ones. Numerical results using this type of superpositions were presented in [37].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Specifically, one decomposes the initial wave function into localized wave packets (Gaussian beams) which are then evolved individually along particle trajectories and finally summed up to construct the solution at a later time. It was first studied rigorously in [25], and has seen many recent developments in both Eulerian and Lagrangian frameworks [13,14,15,17,20,21], error estimates [2,19], and fast Gaussian wave decompositions [1,24]. A related approach, known as the Hagedorn wave packet method, was studied in [8,6].…”
Section: Introductionmentioning
confidence: 99%
“…Most of the methods were in the Lagrangian framework. More recently, Eulerian Gaussian beam methods have also received special attention for their advantage of uniform accuracy [10,11,12,13,16,17]. A major simplification of the Eulerian Gaussian beam method is that the Hessian matrices can be constructed by taking derivatives of the level set functions [10].…”
Section: Introductionmentioning
confidence: 99%