Abstract:Recent years have witnessed an increased interest in recovering dynamical laws of complex systems in a largely data-driven fashion under meaningful hypotheses. In this work, we propose a method for scalably learning dynamical laws of classical dynamical systems from data. As a novel ingredient, to achieve an efficient scaling with the system size, block sparse tensor trains -instances of tensor networks applied to function dictionaries -are used and the self similarity of the problem is exploited. For the latt… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.