Current food traceability systems have a number of problems, such as data being easily tampered with and a lack of effective methods to intuitively analyze the causes of risks. Therefore, a novel method has been proposed that combines blockchain technology with visualization technology, which uses Hyperledger to build an information storage platform. Features such as distribution and tamper-resistance can guarantee the authenticity and validity of data. A data structure model is designed to implement the data storage of the blockchain. The food safety risks of unqualified detection data can be quantitatively analyzed, and a food safety risk assessment model is established according to failure rate and qualification deviation. Risk analysis used visual techniques, such as heat maps, to show the areas where unqualified products appeared, with a migration map and a force-directed graph used to trace these products. Moreover, the food sampling data were used as the experimental data set to test the validity of the method. Instead of difficult-to-understand and highly specialized food data sets, such as elements in food, food sampling data for the entire year of 2016 was used to analyze the risks of food incidents. A case study using aquatic products as an example was explored, where the results showed the risks intuitively. Furthermore, by analyzing the reasons and traceability processes effectively, it can be proven that the proposed method provides a basis to formulate a regulatory strategy for regions with risks.