Let k be an algebraically closed field of prime characteristic p. Let
$kGe$
be a block of a group algebra of a finite group G, with normal defect group P and abelian
$p'$
inertial quotient L. Then we show that
$kGe$
is a matrix algebra over a quantised version of the group algebra of a semidirect product of P with a certain subgroup of L. To do this, we first examine the associated graded algebra, using a Jennings–Quillen style theorem.
As an example, we calculate the associated graded of the basic algebra of the nonprincipal block in the case of a semidirect product of an extraspecial p-group P of exponent p and order
$p^3$
with a quaternion group of order eight with the centre acting trivially. In the case of
$p=3$
, we give explicit generators and relations for the basic algebra as a quantised version of
$kP$
. As a second example, we give explicit generators and relations in the case of a group of shape
$2^{1+4}:3^{1+2}$
in characteristic two.