Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives. Insulin resistance is a condition where the cellular response to insulin is impaired, resulting in elevated insulin levels in the fasting state, although glucose levels are normal or elevated. It affects multiple tissues and is believed to be an underlying cause of type 2 diabetes. It is also a contributing factor for cardiovascular diseases, explained by the association with, for example, obesity, hypertension and dyslipidaemia [1]. Thereby, to prevent and treat many of our global metabolic diseases, we need to further understand insulin resistance on a molecular level.As insulin resistance is caused by multiple factors and affects multiple tissues, there is a need to investigate the interactions between, for example, genetic and non-genetic factors and between different tissues. Epigenetic mechanisms, including DNA methylation, are strong candidates for mediating the environmental effect on the genome and are linked to gene activity and function [2]. In differentiated human cells, DNA methylation mainly takes place on a cytosine residue followed by guanine, a so called CpG site. Key enzymes regulating DNA methylation include DNA (cytosine-5)-methyltransferase (DNMT)3A and -3B, which are involved in de novo methylation, as well as DNMT1, which copies the methylation patterns during replication. In addition, the ten-eleven translocation (TET) enzymes were found to be involved in active demethylation b...