The proinflammatory cytokine interleukin-1β (IL-1β) plays a major role in the signal transduction of immune stimuli from the periphery to the central nervous system, and has been shown to be an important mediator of the immune-induced stress hormone release. The signaling pathway by which IL-1β exerts this function involves the bloodbrain-barrier and induced central prostaglandin synthesis, but the identity of the bloodbrain-barrier cells responsible for this signal transduction has been unclear, with both endothelial cells and perivascular macrophages suggested as critical components. Here, using an irradiation and transplantation strategy, we generated mice expressing IL-1 type 1 receptors (IL-1R1) either in hematopoietic or non-hematopoietic cells and subjected these mice to peripheral immune challenge with IL-1β. Following both intraperitoneal and intravenous administration of IL-1β, mice lacking IL-1R1 in hematopoietic cells showed induced expression of the activity marker c-Fos in the paraventricular hypothalamic nucleus, and increased plasma levels of ACTH and corticosterone. In contrast, these responses were not observed in mice with IL-1R1 expression only in hematopoietic cells. Immunoreactivity for IL-1R1 was detected in brain vascular cells that displayed induced expression of the prostaglandin synthesizing enzyme cyclooxygenase-2 and that were immunoreactive for the endothelial cell marker CD31, but was not seen in cell positive for the brain macrophage marker CD206. These results imply that activation of the HPA-axis by IL-1β is dependent on IL-1R1s on nonhematopoietic cells, such as brain endothelial cells, and that IL-1R1 on perivascular macrophages are not involved. Matsuwaki et al., p. 3