Objective: Cardiac Index (CI) is a key physiologic parameter to ensure end organ perfusion in the pediatric intensive care unit (PICU). Determination of CI requires invasive cardiac measurements and is not routinely done at the PICU bedside. To date, there is no gold standard non-invasive means to determine CI. This study aims to use a novel non-invasive methodology, based on routine continuous physiologic data, called Pulse Arrival Time (PAT) as a surrogate for CI in patients with normal Ejection Fraction. 
Approach: Electrocardiogram (ECG) and photoplethysmogram (PPG) signals were collected from beside monitors at a sampling frequency of 250 samples per second. Continuous PAT, derived from the ECG and PPG waveforms was averaged per patient. Pearson’s correlation coefficient was calculated between PAT and CI, PAT and heart rate (HR), and PAT and ejection fraction (EF). 
Main Results: Twenty patients underwent right heart cardiac catheterization. The mean age of patients was 11.7±5.4 years old, ranging from 11 months old to 19 years old, the median age was 13.4 years old. HR in this cohort was 93.8±17.0 beats per minute. The average EF was 54.4±9.6%. The average CI was 3.51±0.72 L/min/m2, with ranging from 2.6 to 4.77 L/min/m2. The average PAT was 0.31±0.12 seconds. Pearson correlation analysis showed a positive correlation between PAT and CI (0.57, p < 0.01). Pearson correlation between HR and CI, and correlation between EF and CI was 0.22 (p = 0.35) and 0.03 (p = 0.23) respectively. The correlation between PAT, when indexed by HR (i.e. PAT × HR), and CI minimally improved to 0.58 (p < 0.01).
Significance: This pilot study demonstrates that PAT may serve as a valuable surrogate marker for CI at the bedside, as a non-invasive and continuous modality in the PICU. The use of PAT in clinical practice remains to be thoroughly investigated.