Bloodstream Infections in Childhood Acute Myeloid Leukemia and Machine Learning Models: A Single-institutional Analysis
Taylor L. Chappell,
Ellen G. Pflaster,
Resty Namata
et al.
Abstract:Childhood acute myeloid leukemia (AML) requires intensive chemotherapy, which may result in life-threatening bloodstream infections (BSIs). This study evaluated whether machine learning (ML) could predict BSI using electronic medical records. All children treated for AML at Children’s Minnesota between 2005 and 2019 were included. Patients with Down syndrome AML or acute promyelocytic leukemia were excluded. Standard statistics analyzed predictors of BSI, and ML models were trained to predict BSI. Of 95 AML pa… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.