Great Lakes Basin landscapes are undergoing rapid land cover and land use (LCLU) change. The goal for this study was to identify changes in land cover occurring in the Great Lakes Basin over three time periods to provide insights into historical land cover changes occurring on a bi-national watershed scale. To quantify potential impacts of anthropogenic changes on important yet vulnerable Great Lakes Wetland ecosystems, the historical changes in land cover over time are assessed via remote sensing. The goal is to better understand legacy effects on current conditions, including wetland gain and loss and the impacts of upland ecosystems on wetland health and water quality. Three key time periods with respect to Great Lakes water level changes and coastal wetland plant invasions were mapped using Landsat-derived land cover maps: 1985, 1995, and 2010. To address change between the three time periods of interest, we incorporate both radiometric and categorical change analysis and open-source tools available for assessing time series data including LandTrendr and TimeSync. Results include maps of annual land cover transition from 1985 to 1995 and 1995 to 2010 basin-wide and by ecoregion and an assessment of the magnitude and direction of change by land cover type. Basin-wide validated change results show approximately 776,854 ha of land changed from c.1980–1995 and approximately 998,400 ha of land changed from c.1995–2010. Both time periods displayed large net decreases in both deciduous forest and agricultural land and net increases in suburban cover. Change by ecoregion is reviewed in this study with many of the change types in central plains showing change in and out of agriculture and suburban land covers, the mixed wood plain ecoregion consisted of a mixture of agricultural, suburban, and forestry changes, and all top five change types in the mixed wood shield consisted of various stages of the forestry cycle for both time periods. In comparison with previous LCLU change studies, overall change products showed similar trends. The discussion reviews why, while most changes had accuracies better than 84%, accuracies found for change from urban to other classes and from other classes to agriculture were lower due to unique aspects of change in these classes which are not relevant for most change analyses applications. The study found a consistent loss in the deciduous forest area for much of the time studied, which is shown to influence the aquatic nitrogen implicated in the expansion of the invasive plant Phragmites australis in the Great Lakes Basin. This underscores the importance of LCLU maps, which allow for the quantification of historical land change in the watersheds of the Great Lakes where invasive species are expanding.