Infectious pancreatic necrosis virus (IPNV), a pathogen of salmon and trout, imposes a severe toll on the aquaculture and sea farming industries. IPNV belongs to the Aquabirnavirus genus in the Birnaviridae family of bisegmented double-stranded RNA viruses. The virions are nonenveloped with a T31؍l icosahedral capsid made by the coat protein VP2, the three-dimensional (3D) organization of which is known in detail for the family prototype, the infectious bursal disease virus (IBDV) of poultry. A salient feature of the birnavirus architecture is the presence of 260 trimeric spikes formed by VP2, projecting radially from the capsid. The spikes carry the principal antigenic sites as well as virulence and cell adaptation determinants. We report here the 3.4-Å resolution crystal structure of a subviral particle (SVP) of IPNV, containing 20 VP2 trimers organized with icosahedral symmetry. We show that, as expected, the SVPs have a very similar organization to the IBDV counterparts, with VP2 exhibiting the same overall 3D fold. However, the spikes are significantly different, displaying a more compact organization with tighter packing about the molecular 3-fold axis. Amino acids controlling virulence and cell culture adaptation cluster differently at the top of the spike, i.e., in a central bowl in IBDV and at the periphery in IPNV. In contrast, the spike base features an exposed groove, conserved across birnavirus genera, which contains an integrin-binding motif. Thus, in addition to revealing the viral antigenic determinants, the structure suggests that birnaviruses interact with different receptors for attachment and for cell internalization during entry.Birnaviruses form a distinct family of double-stranded RNA (dsRNA) viruses infecting vertebrates and invertebrates (18). Aquatic birnaviruses are the most abundant and diverse and are grouped in two separate genera: the Aquabirnavirus genus and the Blosnavirus genus, with infectious pancreatic necrosis virus (IPNV) and blotched snakehead virus (BSNV) (16) as respective type species. A third aquatic birnavirus of unassigned genus, Tellina virus 1, was recently described and found to be phylogenetically distant from the two established genera (40). However, the vast majority of aquatic birnaviruses are antigenically related to IPNV (i.e., belong to the Aquabirnavirus genus), regardless of host species or geographical origin (4,11,26,39). They are implicated as etiological agents of disease in a variety of mollusks and fish species important in aquaculture, causing pathologies such as infectious pancreatic necrosis in salmonids, nephroblastoma and branchionephritis in eels, and gill necrosis in clams (21,34,50). Viruses in the Aquabirnavirus genus display considerable antigenic diversity and have substantial differences in biological properties such as host range and optimal replication temperature. These features contrast with the properties of other birnaviruses, in particular those infecting terrestrial species (avibirnaviruses and entomobirnaviruses). Based on rec...