2011
DOI: 10.1515/9783110255294
|View full text |Cite
|
Sign up to set email alerts
|

Blow-up in Nonlinear Sobolev Type Equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

2
95
0
17

Year Published

2012
2012
2019
2019

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 189 publications
(121 citation statements)
references
References 0 publications
2
95
0
17
Order By: Relevance
“…Also, they obtained an explicit and general decay rate, depending on σ, g and φ, for the energy of solutions of (1.1) without any growth assumption on g and φ at the origin, and on σ at infinity. Also, the following problem 2) where is a bounded region in R n (n ≥ 1), with a smooth boundary ∂ , was considered by many authors. For instance, in the case when f (u) = |u| p−2 u, g(u t ) = |u t | m−2 u t , m, p > 2, Nakao [70] showed that (1.2) has a unique global weak solution if 0 ≤ p − 2 ≤ 2/(n − 2), n ≥ 3 and a global unique strong solution if p −2 > 2/(n −2), n ≥ 3.…”
Section: Decay In the Case Of Constant Exponentsmentioning
confidence: 99%
See 2 more Smart Citations
“…Also, they obtained an explicit and general decay rate, depending on σ, g and φ, for the energy of solutions of (1.1) without any growth assumption on g and φ at the origin, and on σ at infinity. Also, the following problem 2) where is a bounded region in R n (n ≥ 1), with a smooth boundary ∂ , was considered by many authors. For instance, in the case when f (u) = |u| p−2 u, g(u t ) = |u t | m−2 u t , m, p > 2, Nakao [70] showed that (1.2) has a unique global weak solution if 0 ≤ p − 2 ≤ 2/(n − 2), n ≥ 3 and a global unique strong solution if p −2 > 2/(n −2), n ≥ 3.…”
Section: Decay In the Case Of Constant Exponentsmentioning
confidence: 99%
“…Vitillaro [87] combined the arguments in [45] and [26] to extend these results to situations where the damping is nonlinear and the solution has positive initial energy. For more results concerning blowup and nonexistence, we mention here the work of Vitillaro [88], Todorova [84], Todorova and Vitillaro [85], Wang [89], Liu [51], Wu [90], and the very recent book of Al'shin et al [2]. For the nonlinear Kirchhoff-type problem of the form…”
Section: Blowup In the Case Of Constant Exponentsmentioning
confidence: 99%
See 1 more Smart Citation
“…В упомянутых работах используется классический метод Левина. В настоящей работе мы применяем модифицированный метод Левина, раз-витый в работе [5], который позволит нам получить всего два основных условия на начальные функции; кроме того, мы легко проверим совместность всех полученных условий.…”
Section: Introductionunclassified
“…Используя технику работы [5], можно перейти к пределу при m → +∞ в нера-венстве (29) и получить неравенство Φ(t) Φ −1/4 (0) − At −1/4 , где…”
unclassified