BLSAE-SNIDS: A Bi-LSTM sparse autoencoder framework for satellite network intrusion detection
Shi Shuxin,
Han Bing,
Wu Zhongdai
et al.
Abstract:Due to disparities in tolerance, resource availability, and acquisition of labeled training data between satellite-terrestrial integrated networks (STINs) and terrestrial networks, the application of traditional terrestrial network intrusion detection techniques to satellite networks poses significant challenges. This paper presents a satellite network intrusion detection system named Bi-LSTM sparse selfencoder (BLSAE-SNIDS) to address this issue. Through the development of an innovative unsupervised training … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.