Visible light refers to the frequencies within the electromagnetic spectrum that humans can see, encompassing radiation with wavelengths falling between 380 nm to 760 nm. The energy of a single photon increases with its frequency. In the retina, photoreceptor cells contain light-sensitive pigments that absorb light and convert it into electrical stimuli through a process known as phototransduction. However, since the absorption spectrum of photoreceptors closely aligns with blue light (ranging from 400 to 500 nm), exposure to high light intensities or continuous illumination can result in oxidative stress within these cells, leading to a loss of their functionality. Apart from photoreceptor cells, the retina also houses photosensitive ganglion cells, known as intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells relay information to the suprachiasmatic nucleus in the brain, playing a crucial role in modulating melatonin secretion, which in turn helps in synchronizing the body’s circadian rhythms and responses to seasonal changes. Both, ipRGCs and skin possess a peak sensitivity to blue wavelengths, rendering them particularly susceptible to the effects of excessive blue light exposure. This study delves into the consequences of excessive illumination and/or prolonged exposure to blue light on retinal function and explores its implications for human health.